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BACKGROUND Increasing utilization of long-term outpatient
ambulatory electrocardiographic (ECG) monitoring continues to
drive the need for improved ECG interpretation algorithms.

OBJECTIVE The purpose of this study was to describe the
BeatLogic� platform for ECG interpretation and to validate the plat-
form using electrophysiologist-adjudicated real-world data and
publicly available validation data.

METHODS Deep learning models were trained to perform beat and
rhythm detection/classification using ECGs collected with the Pre-
ventice BodyGuardian� Heart monitor. Training annotations were
created by certified ECG technicians, and validation annotations
were adjudicated by a team of board-certified electrophysiologists.
Deep learning model classification results were used to generate
contiguous annotation results, and performance was assessed in
accordance with the EC57 standard.

RESULTS On the real-world validation dataset, BeatLogic beat
detection sensitivity and positive predictive value were 99.84%
and 99.78%, respectively. Ventricular ectopic beat classification
sensitivity and positive predictive value were 89.4% and 97.8%,
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respectively. Episode and duration F1 scores (range 0–100)
exceeded 70 for all 14 rhythms (including noise) that were evalu-
ated. F1 scores for 11 rhythms exceeded 80, 7 exceeded 90, and 5
including atrial fibrillation/flutter, ventricular tachycardia, ventric-
ular bigeminy, ventricular trigeminy, and third-degree heart block
exceeded 95.

CONCLUSION The BeatLogic platform represents the next stage of
advancement for algorithmic ECG interpretation. This comprehen-
sive platform performs beat detection, beat classification, and
rhythm detection/classification with greatly improved performance
over the current state of the art, with comparable or improved per-
formance over previously published algorithms that can accomplish
only 1 of these 3 tasks.

KEYWORDS Artificial intelligence; BeatLogic; Deep learning; Elec-
trocardiographic interpretation; Preventice Solutions

(Heart Rhythm 2020;17:881–888) © 2020 The Authors. Published
by Elsevier Inc. on behalf of Heart Rhythm Society. This is an
open access article under the CC BY-NC-ND license (http://
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Introduction
Outpatient ambulatory electrocardiographic (ECG) moni-
toring has grown in popularity due to technological advance-
ments, which have decreased monitor size, increased battery
life, and enabled mobile telemetry. Modern ambulatory ECG
monitors allow for up to 30 days of continuous monitoring,
producing far toomuch data for physicians to comprehensively
analyze. For this reason, service providers are commonly used
to annotate ECG recordings and create reports that summarize
and highlight ectopic activity. These reports provide clinical
decision support for prescribing physicians. Service providers
rely on certified technicians and supporting algorithms to pro-
cess and annotate the data from ECG monitoring studies. His-
torically, supporting algorithms have achieved levels of
performance well below that of humans1 but high enough to
be used for prioritization and conservative filtering of ECG
as it is queued for human interpretation.2 Better supporting al-
gorithms have the potential to improve this process by more
accurately detecting the presence and absence of cardiac ar-
rhythmias.

Currently, most ECG interpretation algorithms rely on
signal processing and classic machine learning; however,
recent studies applying deep learning (DL) to aspects of
ECG interpretation have generated exciting results.3–8 DL
models rely on simple computational units that are stacked in
layers and operate on raw data to extract complex features
relevant to the classification problem at hand.9 This differs
fromclassicmachine learning, inwhichmanual feature discov-
ery and extraction are performed using signal processing.
Automated feature discovery with DL generally delivers supe-
rior performance in domains where data contain subtle details
and complex interactions. These factors make DL well suited
for ECG interpretation algorithms. Previous studies applying
DL to ECG interpretation performed only beat detection,
beat classification, or rhythm classification, and only those
created for beat classification tend to follow the American Na-
tional Standards Institute (ANSI)/Association for the
Advancement of Medical Instrumentation (AAMI) EC57
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standard10 when evaluating performance. This work details
and validates the Preventice BeatLogic� platform, a compre-
hensive ECG annotation platform that leverages DL for beat
and rhythm detection/classification. Performance was
measured using the EC57 standard and compared to a commer-
cial state-of-the-art ECG interpretation algorithm using real-
world gold standard data and also compared to previously
published work using publicly available validation datasets.

Methods
Training data
Deidentified ECG recordings from the single-channel Pre-
ventice BodyGuardian� Heart (Preventice Solutions,
Rochester, MN) ambulatory patch-style monitor were mined
from the Preventice ECG monitoring platform using a com-
bination of random selection and targeted mining. Targeted
mining ensured sufficient representation of artifact and ar-
rhythmias by selecting ECGs in which normal processing
through the Preventice ECG monitoring platform identified
the targeted arrhythmia. Targeted arrhythmias included junc-
tional rhythms, heart blocks, and intraventricular conduction
delay with occasional ventricular ectopic beats (VEBs).
Training data were captured as 20,932 individual records
with duration between 15 seconds and 4 minutes. Annota-
tions were made in accordance with standard practice by a
dedicated team of Certified Cardiographic Technician
(CCT)-certified ECG technicians having experience ranging
from 9–30 years. These technicians received specialized
training to ensure that annotations were sufficiently detailed
and consistent. The final training dataset consisted of
782.44 hours of ECG from 11,008 unique patients
(Table 1). Beat and rhythm contents for the training dataset
are detailed in the Supplemental Material (Supplemental
Tables 1, 2, and 3).

Validation data
ECG for the gold standard validation dataset (aka gold
validation) was selected from a candidate pool of 3000
pseudo-randomly selected deidentified BodyGuardian Heart
recordings. The candidate pool contained 120 examples of
25 rhythms that were partially annotated by CCT-certified
ECG technicians during normal processing through the Pre-
ventice ECG monitoring platform. From the candidate pool,
approximately 20 examples of each rhythm were randomly
selected from records in which the partial annotations were
confirmed by a senior ECG technician. Comprehensive anno-
tation was performed by a team of CCT-certified ECG
Table 1 ECG dataset general information

Records Patients Duration (h)

Training 20,932 11,008 782.44
Gold validation 515 505 12.79
MIT-BIH 48 47 24.07
MIT-BIH 11 11 11 5.52
MIT-AFDB 23 23 234.28

ECG 5 electrocardiography.
technicians having experience ranging from9–30years.Anno-
tations were individually adjudicated by 3 board-certified elec-
trophysiologists (EPs), and records with ,100% agreement
were adjudicated in a group forum at which time the annota-
tions were adjusted to align with the group consensus. Records
were excluded from the validation library if a consensus could
not be reached. The gold validation dataset included 515, 1- to
4-minute records from 505 patients (Table 1). No patient over-
lap was allowed between the training and gold standard valida-
tion datasets.

Validation was also performed using the MIT-BIH
Arrhythmia Database11 (MIT-BIH) and the MIT Atrial
Fibrillation Database12 (AFDB). MIT-BIH consists of
24.07 hours of 2-channel ambulatory ECG from 47 patients
(Table 1). In accordance with previously published work,
the full database was used to measure beat detection perfor-
mance, and an 11-record subset was used to measure VEB
classification performance. AFDB consists of 234.28 hours
of 2-channel ambulatory ECG from 23 patients (Table 1)
and was used to measure atrial fibrillation/flutter perfor-
mance. Beat and rhythm contents for each validation dataset
are detailed in the Supplemental Material (Supplemental
Tables 1, 2, and 3).
BeatLogic platform
The BeatLogic platform consists of 2 DL models—BeatNet
and RhythmNet—the results of which are consolidated using
rules-based logic to produce a single contiguous annotation
file (Figure 1). BeatNet performs artifact detection, beat
detection, and beat classification. RhythmNet performs
detection and classification of Sinus rhythm (Sinus), Atrial
Splice together rhythms and artifact 
to create contiguous annotation file, 
calculate heart rates and resolve 
rate-based distinctions (e.g. VT/IVR)

Detect 
ventricular 
rhythms, 
IVCD, 
and Pause

Consolidation Algorithm

Figure 1 BeatLogic platform flowchart. AFib 5 atrial fibrillation/flutter;
BII15 second-degree heart block type 1; BII25 second-degree heart block
type 2; IVCD 5 intraventricular conduction delay; IVR 5 idioventricular
rhythm; Junctional5 junctional rhythm; Sinus5 sinus rhythm; SVT5 sup-
raventricular tachycardia; VT 5 ventricular tachycardia.
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fibrillation/flutter (AFib), Supraventricular tachycardia
(SVT), Junctional rhythm (Junc), Second-degree heart block
type 1 (BII1), Second-degree heart block type 2 (BII2),
Third-degree heart block (BIII), and Other. The consolidation
algorithm generates Ventricular tachycardia (VT), Idioven-
tricular rhythm (IVR), Intraventricular conduction delay
(IVCD), Ventricular bigeminy (VBigem), Ventricular trige-
miny (VTrigem), and Pause annotations using the BeatNet
output and then splices together RhythmNet rhythms, ven-
tricular rhythms, and artifact to create contiguous annotation
files.
DL architecture
Both DL models rely on a similar architecture, which pro-
duces a sequence of classification results from a time series
of single-channel ECG voltage values (Figure 2). The archi-
tecture is derived from preactivation ResNet,13,14 a popular
image classification architecture. Modifications to the archi-
tecture included replacing 2-dimensional (2D) convolutions
with 1 dimension (1D) and removing the final pooling layer
in order to repurpose the 2D image classification design to a
1D sequence-to-sequence classification design. As raw ECG
flows through the network, it is compressed in the time
dimension and extended depthwise. Compression occurs in
the first convolution and at regular intervals throughout the
remainder of the network. The input size and number of
compression layers determine the model output resolution.
The input to both DL models was 15,360 samples (60 sec-
onds), which was compressed 5 times, resulting in 480
sequential outputs (every 0.125 second) for BeatNet, and
compressed 8 times, resulting in 60 sequential outputs (every
1 second) for RhythmNet. Both architectures ended with a
fully connected layer and softmax activation function, which
BeatNet
RhythmNet

15360 x 1

7680 x 16

3840 x 16

1920 x 32

960 x 48

480 x 64

240 x 80

120 x 96

60 x 112

Convolution (stride=2)
Batch norm, Activation, Dropout, Convolution (stride=2)
Batch norm, Activation, Dropout, Convolution (stride=1)
1x1 Convolution (stride=2)
Fully connected
Softmax

60 seconds of ECG 60 seconds of ECG

OR

480
beat

labels

60
rhythm
labels

BeatNet: 7X
RhythmNet: 9X

BeatNet: 7X
RhythmNet: 9X

BeatNet: 7X
RhythmNet: 9X

BeatNet: 2X
RhythmNet: 5X

Figure 2 Deep learning model architecture. ECG 5 electrocardiogram.
produced classwise probabilities for each sequential output.
The highest probability was selected as the label for each
sequential output.

ECG signal processing
ECG recordings were preprocessed using a wavelet high-
pass (fc 5 0.5 Hz) filter15 to remove baseline wander and 2
second-order Butterworth band-stop (fc 5 50 and 60 Hz) fil-
ters to remove powerline interference. After filtering, MIT-
BIH and AFDB data were resampled to 256 Hz using linear
interpolation.

Training record annotations
Training record annotations were generated for each model at
the designed output resolution. BeatNet annotations were
divided into 480 sequential classification labels consisting of
Artifact, Not-a-beat, Ventricular ectopic, Bundle branch block,
Normal, and Other. The Normal class included supraventricu-
lar ectopic beats, and the Other class included paced and un-
classifiable beats. Sections with artifact onset/offset were
labeled Artifact; sections with no beat and no artifact were
labeled Not-a-beat; and sections in which a beat peak occurred
anywhere within the 0.125-second window were labeled with
the appropriate beat class label. Training records shorter than
60 seconds were padded using Other. RhythmNet annotations
were divided into 60 sequential classification labels consisting
of Sinus, AFib, BII1, BII2, BIII, SVT, Junctional, and Other.
Rhythm transitionswere labeled using the rhythm that spanned
the majority of the 1-second region. Training records shorter
than 60 seconds were padded using Other.

Model initialization and training
DL model weights were initialized in accordance with
He et al16 and trained using Adam17 to optimize softmax
cross-entropy. Padded and Other regions were masked in the
training loss calculation. Mini-batch size and initial learning
rate were optimized using the hyperparameter tuning process.
A development dataset was partitioned from the training data,
which was evaluated during training to implement early stop-
ping and at the end of training to compare the performance of
modelswith different hyperparameters. The development data-
set contained at least 10 examples of each annotation, and no
patient overlap was allowed between the development dataset
and the remaining training dataset. After each training epoch (1
cycle through the full training dataset), micro-averaged
training and development dataset F1 scores were calculated,
and the training dataset was randomly shuffled. During
training, learning rate was reduced when the training dataset
F1 score did not improve for 5 consecutive epochs. Early stop-
ping was invoked when the calculated PQ value18 exceeded a
threshold thatwas set using the hyperparameter tuning process.

Hyperparameter tuning
To fully define the model architecture and training procedure,
model hyperparameters were optimized. Because preactiva-
tion ResNet was designed for image classification, this base



Table 2 Beat detection performance

Algorithm Dataset Se (%) PPV (%) F1

Pan and Tompkins24 MIT-BIH 99.76 99.56 99.66
Christov25 MIT-BIH 99.74 99.65 99.69
Chiarugi et al26 MIT-BIH 99.76 99.81 99.78
Chouakri et al27 MIT-BIH 98.68 97.24 97.95
Elgendi28 MIT-BIH 99.78 99.87 99.82
State of the art MIT-BIH 97.58 99.44 98.50
BeatLogic MIT-BIH 99.60 99.78 99.69
Martinez et al29 MIT-BIH VFib excluded 99.80 99.86 99.83
Arzeno et al30 MIT-BIH VFib excluded 99.68 99.63 99.65
Zidelmal et al31 MIT-BIH VFib excluded 99.64 99.82 99.73
State of the art MIT-BIH VFib excluded 97.58 99.57 98.56
BeatLogic MIT-BIH VFib excluded 99.60 99.90 99.75
State of the art Gold validation 95.79 96.32 96.05
BeatLogic Gold validation 99.84 99.78 99.81

PPV 5 positive predictive value; Se 5 sensitivity; VFib 5 ventricular fibrillation.

Table 3 Ventricular ectopic beat classification performance

Algorithm Dataset Se (%) PPV (%) F1

de Chazal et al22 MIT-BIH 11 77.5 90.6 83.5
Jiang and Kong3 MIT-BIH 11 94.3 95.8 95.0
Ince et al32 MIT-BIH 11 90.3 92.2 91.2
Kiranyaz et al20 MIT-BIH 11 95.9 96.2 96.0
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architecture was reparameterized for sequence-to-sequence
ECG classification in the context of BeatNet and RhythmNet.
Hyperparameter optimization was performed using a combi-
nation of grid-search and tree-structured parzen estimator
optimization19 (for details see the Supplemental Material
and Supplemental Table 4). The optimized BeatNet and
RhythmNet models contained 81 and 113 convolutional
layers.

State-of-the-art algorithm
The state-of-the-art algorithm was selected from several
commercially available Food and Drug Administration
(FDA)–cleared options capable of comprehensive beat and
rhythm detection/classification. Candidate algorithms were
evaluated using the EC57 standard, and the most accurate
system was selected. Details of the selected algorithm are
proprietary and were not disclosed to the authors for publica-
tion; however, the selected algorithm is known to leverage
signal processing and classic machine learning techniques
that are derived from the current ECG literature.

Validation procedure
Algorithm validation was performed in accordance with the
EC57 guidelines.10 EC57 is the FDA-recognized consensus
standard and provides detailed instructions for measuring
beat and rhythm detection/classification sensitivity (Se),
and positive predictive value (PPV). Additionally, F1 scores
(0–100) were calculated for each validation metric per Equa-
tion 1.

F1 5 2!
Sensitivity!PPV

Sensitivity1PPV
(Eq. 1)
Zhang et al MIT-BIH 11 97.6 97.6 97.6
State of the art MIT-BIH 11 73.2 96.3 83.2
BeatLogic MIT-BIH 11 97.9 98.9 98.4
State of the art Gold validation 36.0 51.2 42.2
BeatLogic Gold validation 89.4 97.8 93.4

Abbreviations as in Table 2.
Results
Beat detection
On the MIT-BIH dataset, the BeatLogic platform performed
equal to or better than 5 of the 8 previously published
algorithms, whereas the state-of-the art algorithm outper-
formed only 1 published algorithm (Table 2). On the gold vali-
dation dataset, BeatLogic sensitivity was 99.84%, which
exceeded the state-of-the-art algorithm by .4 percentage
points. BeatLogic PPV was 99.78%, which exceeded the
state-of-the-art algorithm by.3 percentage points (Table 2).
VEB classification performance
On the 11-record MIT-BIH data subset for measuring VEB
performance, BeatLogic outperformed all other algorithms,
achieving an F1 score of 98.4, which is 0.8 points higher
than the next highest performing algorithm (Table 3). On
the gold validation dataset, BeatLogic outperformed the
state-of-the-art algorithm, achieving sensitivity of 89.4%
and PPV of 97.8% (Table 3).
Rhythm detection and classification
On the AFDB dataset, BeatLogic outperformed the previ-
ously published algorithms. The BeatLogic platform
achieved episode Se/PPV of 97.7%/99.3% and duration
sensitivity/PPV of 97.7%/99.7% (Table 4). On the gold vali-
dation dataset, BeatLogic outperformed the state-of-the-art
algorithm for all 14 rhythms in measures of episode and
duration sensitivity and PPV (Table 4). Three rhythm
classes (junctional rhythm, second-degree heart block type



Table 4 Rhythm episode and duration performance

Rhythm Dataset Algorithm

Episode Duration

Se (%) PPV (%) F1 Se (%) PPV (%) F1

AFib AFDB Petrucci et al33 DRR 92.0 78.0 84.4 89.0 90.0 89.5
Petrucci et al33 RRP 91.0 92.0 91.5 93.0 97.0 95.0
State of the art 63.3 100.0 77.5 65.3 99.3 78.8
BeatLogic 97.7 99.3 98.5 97.7 99.7 98.7

AFib Gold validation State of the art 67.4 78.4 72.5 71.4 80.4 75.6
BeatLogic 96.4 98.6 97.5 97.2 99.7 98.4

Sinus Gold validation State of the art 84.9 79.0 81.8 83.5 84.5 84.0
BeatLogic 97.8 87.3 92.3 99.5 95.5 97.5

IVCD Gold validation State of the art 11.5 19.2 14.4 10.8 19.0 13.8
BeatLogic 90.1 75.4 82.1 90.8 83.1 86.8

Artifact Gold validation State of the art 51.5 56.6 53.9 69.8 51.5 59.3
BeatLogic 79.9 79.8 79.8 90.4 65.7 76.1

Pause Gold validation State of the art 69.8 100.0 82.2 67.6 99.9 80.6
BeatLogic 97.7 93.2 95.4 92.0 93.7 92.8

SVT Gold validation State of the art 66.7 33.3 44.4 81.3 51.6 63.2
BeatLogic 90.0 83.1 86.4 97.7 95.0 96.3

VT Gold validation State of the art 51.6 20.9 29.7 16.7 27.3 20.7
BeatLogic 100.0 94.0 96.9 97.4 95.2 96.3

IVR Gold validation State of the art 61.7 33.8 43.7 60.5 28.5 38.7
BeatLogic 83.0 98.0 89.8 63.8 96.4 76.8

Junctional Gold validation State of the art — — — — — —
BeatLogic 91.3 73.9 81.7 84.9 77.5 81.0

VBigem Gold validation State of the art 62.3 75.3 68.2 29.1 77.5 42.3
BeatLogic 100.0 98.6 99.3 99.2 98.7 99.0

VTrigem Gold validation State of the art 80.6 88.9 84.5 73.0 92.5 81.6
BeatLogic 97.2 97.3 97.3 98.4 98.4 98.4

BII1 Gold validation State of the art — — — — — —
BeatLogic 56.9 93.2 70.7 72.6 97.7 83.3

BII2 Gold validation State of the art 30.0 73.2 42.6 9.9 68.9 17.3
BeatLogic 80.0 82.9 81.4 85.3 86.1 85.7

BIII Gold validation State of the art — — — — — —
BeatLogic 98.7 95.8 97.2 93.2 97.2 95.1

AFib5 atrial fibrillation/flutter; BII15 second-degree heart block type 1; BII25 second-degree heart block type 2; BIII5 third-degree heart block; DRR 5
delta-RR; IVCD5 intraventricular conduction delay; IVR5 idioventricular rhythm; Junctional5 junctional rhythm; RRP5 RR prematurity; Sinus5 sinus rhythm; SVT
5 supraventricular tachycardia; VBigem 5 ventricular bigeminy; VT 5 ventricular tachycardia; VTrigem 5 ventricular trigeminy; other abbreviations as in Table 2.
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1, third-degree heart block) were not called at all by the state-
of-the-art algorithm. State-of-the-art episode and duration F1
scores exceeded 70 for 7 rhythms and exceeded 80 for
episode detection of 3 rhythms. State-of-the-art episode and
duration F1 scores did not exceed 85 for any rhythm.
Figure 3 BeatLogic results (blue) compared with gold validation truth (black) d
tion/flutter onset/offset.
BeatLogic episode and duration F1 scores exceeded 70 for
all 14 rhythms, exceeded 80 for 11 rhythms, exceeded 90
for 7 rhythms, and exceeded 95 for the following 5 rhythms:
atrial fibrillation/flutter, ventricular tachycardia, ventricular
bigeminy, ventricular trigeminy, and third-degree heart
emonstrating beat detection/classification, noise detection, and atrial fibrilla-



Figure 4 BeatLogic results (blue) compared with gold validation truth (black) demonstrating beat detection/classification, ventricular bigeminy, and ventric-
ular tachycardia detection. Where ventricular trigeminy transitions to bigeminy, BeatLogic elects to extend the duration of the higher-acuity rhythm.

886 Heart Rhythm, Vol 17, No 5PB, May 2020
block. Figures 3 and 4 illustrate results produced by the Beat-
Logic platform.
Discussion
This study is the first to demonstrate a comprehensive
DL-based platform capable of performing beat and rhythm
detection/classification. With the exception of 3 studies, the
BeatLogic platform performed equal to or better than all other
algorithms for beat detection, VEB classification, and detec-
tion/classification of the 14 evaluated rhythms. This work
builds on previous studies using DL for single ECG interpreta-
tion tasks5,6,20 but is differentiated by several key factors: (1)
the large diverse real-world training dataset; (2) our method
for leveraging beat classification results to annotate ventricular
rhythms and beat patterns; (3) hyperparameter optimization,
which produced very deep networks; (4) the large diverse
real-world EP-adjudicated validation dataset; and (5) compar-
isons to previously published work and to a commercially
available state-of-the-art ECG interpretation system.
Data quality and patient diversity
In developing this platform, training data diversity and qual-
ity were fundamental to achieving high performance. Initial
experiments using publicly available data, which had limited
patient and arrhythmia diversity, produced models that per-
formed well on a public data holdout dataset but would not
generalize to new patients. BeatLogic training annotations
were created and adjudicated by a dedicated team of experi-
enced ECG technicians using a rigorous process designed to
ensure quality and consistency. The training dataset was
meticulously and continuously grown over several years us-
ing a data-driven approach, which identifies algorithm failure
modes and addresses them with additional training data.
DL architecture
In designing this system, several DL architecture designs
were evaluated. The sequence-to-sequence convolutional
network was selected because it achieved better performance
at reduced computational cost compared to other architec-
tures we tested. This finding was consistent with that of Han-
nun et al,6 who used a similar architecture to create a
12-rhythm (including noise) classifier. One major difference
in the 2 architectures is the number of convolutional layers
(113 for RhythmNet vs 34 from Hannun et al6). Consistent
with findings in the image classification domain,13 our opti-
mization results demonstrated a preference for deeper net-
works with narrow filters. Combining narrow filters with
more convolutional layers enables the network to create
more complex features without reducing the network recep-
tive field, that is, the region of the input that can affect the
value of the output.21 Because deeper networks have larger
receptive fields, the model can leverage more contextual in-
formation from the 60-second input than can be achieved us-
ing a shallow version of the same network. Contextual
information is extremely important for human ECG interpre-
tation, so we expect it should be equally important for algo-
rithmic ECG interpretation. Whether Hannun et al6

experimented with deeper networks is unclear; however, ben-
efits from increasing depth receptive field may have been
limited by their input data duration, which was 30 seconds.

Ventricular rhythm detection
In contrast to previous studies that used DL rhythm classifiers
to detect ventricular rhythms,6 we leverage beat classification
results for identifying ventricular rhythms. We selected this
approach because it enables detection of standalone VEBs
and couplets, but we found it also facilitated superior ventric-
ular rhythm detection performance. Currently used only for
ventricular rhythms, this approach could also be utilized for
atrial, junctional, and supraventricular rhythms.

Comparisons with the state-of-the-art commercial
algorithm
Improvements over the state-of-the-art commercial algorithm
demonstrate the unique capacity of DL models to outperform
classic machine learning for ECG annotation. Nearly all
commercially available algorithms we evaluated performed
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better on the MIT-BIH and AFDB datasets than on the gold
validation dataset. This suggests that these algorithms were
tuned to the public datasets, which were not captured using
a patch-style monitor. Patch-style recordings present a
unique challenge for automated systems due to the short
dipole and placement near large muscle groups. This results
in lower-amplitude p waves and reduced signal-to-noise ra-
tio. In contrast, BeatLogic DL models were trained using
patch-style recordings and in some cases performed better
on the MIT-BIH and AFDB datasets than on the gold valida-
tion dataset. The different makeup of these datasets prevents
strict comparisons; however, these results suggest that the DL
models have discovered features that generalize to ECGs re-
corded using different methods. Because basic techniques
used by humans for beat and rhythm detection/classification
are generally device agnostic, this finding bodes well for the
DL approach.
Comparisons with previously published work
BeatLogic outperformed previously published algorithms
capable of performing only a single task. Performance was
compared with 14 previously published algorithms, which
represents a small proportion of the studies uncovered in
our literature search. Studies were excluded for using
nonstandard subsets of the MIT-BIH or AFDB database,
for using nonstandard analysis techniques, and for allowing
training/validation patient overlap. An exception was made
for VEB classification performance, for which nearly all
studies leveraged training/validation patient overlap to create
patient-specific classifiers. In this group, only de Chazal
et al22 and BeatLogic generalize without time-consuming pa-
tient-specific training. Of the many atrial fibrillation/flutter
algorithm studies, we found only one that followed the
EC57 standard for measuring performance. Other studies
used beat-by-beat analysis, just episode analysis, or arbitrary
1- to 10-second-long segments to calculate sensitivity and
PPV. In a recent study, Gusev et al23 demonstrated how these
nonstandard validation methods can fail to accurately reflect
algorithm performance. Although the widespread use of
nonstandard rhythm performance measurement techniques
does not invalidate the findings of these studies, it does
make their results difficult to interpret in the context of other
work.
Study limitations
Patient deidentification prevented characterization of the pa-
tient population in this study.We sought to mediate the impact
of patient subtypes by leveraging random selection and a large
patient population; however, future work incorporating diag-
nosis status, medication status, bodymass index, activity level,
and other factors would allow for measuring algorithm perfor-
mance within specific patient subsets and ensure equal repre-
sentation in the training dataset. Unfortunately, the
proprietary state-of-the-art algorithm used for comparison pre-
vents us from fully describing its underlying algorithms. How-
ever, as a commercially available FDA-cleared system, its
performance represents a meaningful baseline for contextual-
izing BeatLogic performance. Notable conditions not repre-
sented within the study include pacing and Ventricular
Fibrillation (VF). Because remote ambulatory monitor antia-
liasing filters distort pacer artifacts, detection is commonly per-
formed on-device rather than with downstream annotation
algorithms. VF is a critical but rare arrhythmia, and because
DL requires many examples for each rhythm our DL models
were not trained to detect VF. Instead, downstream systems
leverage classic signal processing for VF detection. As with
all learning-based algorithms, performance of this system is,
in general, limited by the training data volume, diversity, and
label consistency. We sought to mediate these limitations
through intelligent mining of training records and standardiza-
tion of the annotation process. Although the impact of these ef-
forts is difficult to quantify, we anticipate that continuous
iteration on these approacheswill be fundamental to improving
the performance of beat and rhythm detection/classification
and to expanding the types of rhythms and beats that the plat-
form can accurately identify.
Conclusion
As the popularity of long-term ambulatory ECG monitoring
continues to grow, reliance on ECG interpretation algorithms
will increase. Initial applications of DL to ECG interpretation
focused on only beat detection, beat classification, or rhythm
classification have shown promising results. By leveraging
high-quality comprehensive training data and multiple DL
models to create a system that can perform all 3 tasks, Beat-
Logic represents the next stage of advancement for algo-
rithmic ECG interpretation. Real-world gold standard
validation demonstrates the superiority of this approach
over the current state of the art.
Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2020.
02.015.
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